

. . • . . • • • `••••, . õ õ . ٠ Õ õ Ò Õ ••••••••••• ••••••••••••• •••••••••• ••••••••••••• ••••••••••••• ••••••••••••• ••••••••••• ••••••••••••••• ••••••••••• ••••••••••••••• ••••••• ••••••••••••••••• ••••••••••••••• ••••••••••••••••• •••••••••••••• ••••••••••• ••••••••• ••••••• ... •••• • • • • . . • • • • • . • . ē . • • . . • • • . • ... • • • • ۰ • ۰ . • • • . • . . . • • ... • • . . • • . • • . • • . . • . . .

Light is

possibility itself.

Light is possibility itself.

Opening up the infinite possibilities of light to contribute further to humankind and society.

Light is all around us and brings numerous benefits. Since its founding, Hamamatsu Photonics has been pursuing the possibilities of light and taking on the challenges of opening up the unknown and unexplored realms. Our unique products and state-of-the-art technologies that have emerged from these challenges serve as key enabling technologies that are beginning to shed light on the various issues facing human society.

We are now at a major turning point of the times. In addition to the three existing advanced technologies of electron tubes, opto-semiconductors, and image & measurement instruments, we have set out to further boost our laser application technology. In this way, we will respond to increasingly diverse needs at the industrial, societal, and global levels.

Inheriting the "Photonics-ism" that makes us a unique R&D company and leads the way to the yet unexplored. Using the needs of the world as guideposts, we hope to contribute to the health and well-being of mankind and create a sustainable society.

Kamiokande has brought us

a number of new discoveries.

Yet these great discoveries are

only the start for a stream of new

evolution.

In 1987, Kamiokande made a stunning achievement, namely history's first observation of neutrinos that were released from a supernova exp

20-inch diameter photomultiplier tubes.

will eventually be succeeded by the Hyper-Kamiokande proje

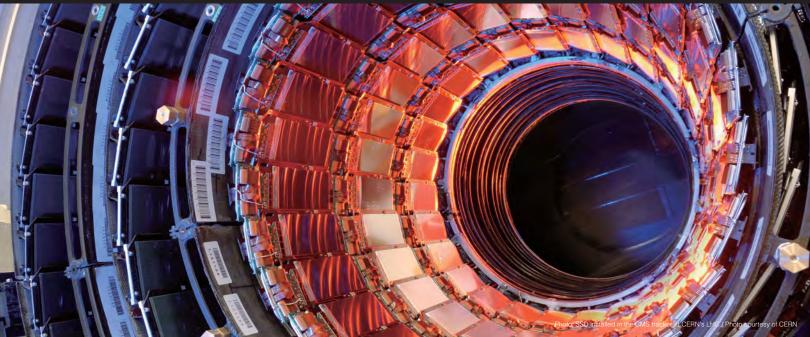
This one-in-a-million chance, brought from a point in space 160,000 light-years away, was captured by the world's largest

This technology has continually evolved, and been taken over by Super-Kamiokande that is currently working for even higher performance and

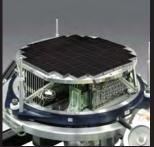
Knowledge and Light

Academic Research

IceCube Neutrino Observatory CERN/High-energy particle collision experiment (Higgs boson detection) Subaru Telescope


Academic Research

Large diameter spherical phot used for IceCube experimen


Experiment for observing high-energy neutrinos travelling through the universe

Neutrinos are mysterious and elusive elementary particles that have extremely high permeability and almost never react with other substances. These features make them nearly impossible to detect. The IceCube Neutrino Observatory is located in Antarctica. In this observatory, high-sensitivity detectors using our large diameter spherical photomultiplier tubes are installed deep within a 1 cubic kilometer ice block in Antarctica that blocks out almost all light and radiation. In very rare cases, when a neutrino interacts with a molecule of ice, weak light called Cherenkov radiation is emitted and is captured by these high-sensitivity detectors.

Contributing to detection of "Higgs boson" often called the God particle that gives mass to matter particles

The Higgs boson often called the God particle has not been discovered up until recently. Its existence has finally been confirmed by the experiments using the "Large Hadron Collider (LHC)" the world's largest accelerator measuring 27 kilometers in circumference. Hamamatsu Photonics SSD (Silicon Strip Detectors) contributed to this great discovery. These SSD detected the tracks along which the particles pass to a resolution within a few dozen micrometers.

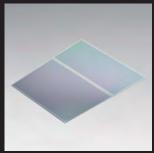

ensors arranged in a tile forma

Image sensors with the world's highest sensitivity mounted in the Subaru Telescope

The Subaru Telescope is a large-scale optical infrared telescope located at an elevation of 4205 meters atop Mauna Kea on the Island of Hawaii. This new generation telescope offers epoch-making high observation performance. Its ultra-wide-field prime focus camera contains CCD area image sensors made by Hamamatsu Photonics that boast the highest sensitivity in the world. The Subaru Telescope observed a galaxy that is 12.91 billion light-years away from Earth (about 750 million years after the Big Bang).

SSD used for "Higgs boson" detectio

Body, life, and mind

all spring from effects of

the same substances.

Light reveals how these substances work

and is the key to help treat all kinds

of illnesses.

Human beings and Light

For figuring out causes of diseases, observation for tissues and cells is important. Creating digital data with giga pixels by scanning glass slides containing cells and tissues at high speed enables observation beyond time and space. Hamamatsu Photonics will contribute to a wide range of medical care, from prevention to diagnosis, by imaging the human body from various angles using cutting edge of optical technologies.

Photo: Cells image scanned with NanoZoomer®

Medical (Imaging) Medical (Laboratory testing) . Life Science

PET/CT
Blood test
Whole slide imaging

Medical (Imaging)

No matter how healthy you are, you cannot reduce the future risk of disease to zero. Early detection of disease by regular health checkups is very important. Hamamatsu Photonics manufactures high-performance devices optimized for medical use such as PET (positron emission tomography), mammography and X-ray CT. Our devices currently play an important role in medical examinations throughout the world by detecting diseases including cancer at their early stages.

Detecting disease at an even earlier stage

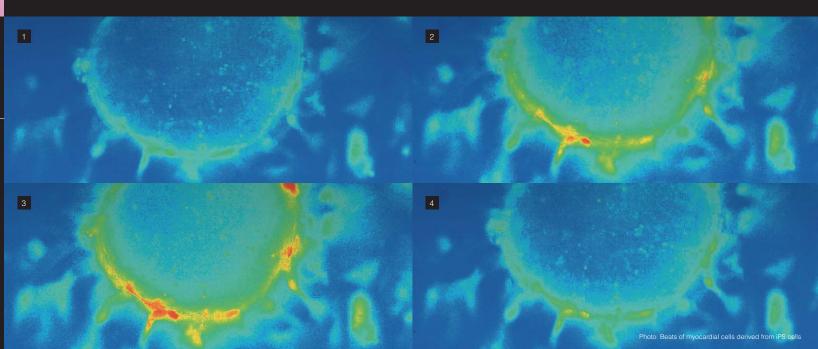
X-ray flat panel sensor

X-ray scintillator plate for X-ray

inspection

Medical (Sample testing)

If we could carry out highly accurate daily health tests at home, then daily health management and health awareness would be vastly improved. If we could obtain detailed test results from just a small amount of blood, then this would take a large burden off the person being tested. To make them a reality Hamamatsu Photonics provides cutting-edge photonics technology for medical use in the form of compact, high-performance devices for new medical fields that include blood tests, biochemical tests, immunological tests, and bacteria tests.


Life Science Capturing complex and diverse life phenomena ranging from molecules to tissue

The human body consists of 60 trillion cells and each cell functions according to its genetic information. If we could understand the molecular level mechanism by which cells proliferate and die then we could develop new therapeutic agents and drugs. Molecular mechanisms that create higher functions in organisms are currently being revealed one after another. Hamamatsu Photonics continues to provide advanced detection technology for research fields underlying Kinetic plate imager (FDSS®-GX) the study of life phenomena.

Digital slide scanner syster NanoZoomer[®] S360)

cope imaging (ORCA®-Fusion BT)

To maintain daily health in mind and body every day

Compact photomultiplier tube products for laboratory testers

Compact lamp light sources for laboratory testers

Image sensors for blood tests

Creating energy that brings the blessing of the sun within reach... Light can possibly solve the two major problems of energy shortages and environmental destruction at the same time.

Future and Light

A spherical vacuum vessel is installed in a laboratory surrounded by concrete walls1.2 meters thick. A nuclear fusion target is placed in the center of this vacuum vessel and irradiated by a high-power laser beam guided through a red pipe to trigger a nuclear fusion reaction with deuterium.

Light or namely photons have properties of both a wave and a particle and so possess the potential to open up entirely new applications in various industrial fields.

Camber for laser fusior

Industry Environment Daily life

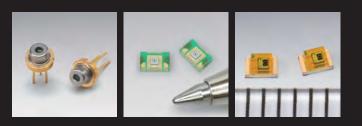
X-ray non-destruction inspections Environmental analysis (water, air, soil, radiation, etc.) Vehicle on-board electronics

Industry Light is essential in modern industry that allows no compromise with quality and safety.

While recent years have seen increasingly tougher demands for food product safety and industrial product quality, there also seems to be no letup in the pace of tech advances to streamline and speed up production processes. Hamamatsu Photonics is helping to refine and streamline manufacturing and inspection processes to deal with diverse problems in the industrial field. Hamamatsu Photonics does this by offering a wide-ranging product lineup including X-ray sources and detectors capable of non-contact and non-destructive inspection of defects in tiny internal structures.

X-ray source for X-ray X-ray flat panel sensor Microfocus X-rav source

Camera for X-ray X-ray TDI camera / X-ray line sensor camera


Environment

Human actions have caused multiple environmental problems such as pollution of air and water quality, global warming and radiation issues. To protect our world from these problems and achieve a sustainable society, it is essential that we create highly accurate optical measurement techniques. Hamamatsu Photonics designs and fabricates environmental measurement devices that capture accurate information on air, water quality and soil. We also contribute to alleviating global environmental problems by offering various types of optical measurement products such as mini-spectrometers and module products specifically designed for detecting radiation.

Daily Life

Photonics technology that supports a future life of greater convenience

Highly sophisticated devices are making their way into close-at-hand items in our daily lives such as constantly evolving wearable communication terminals, household robots in the form of automatic vacuum cleaners, and other gadgets. Hamamatsu Photonics photodetector and light emitter devices are expanding into ever widening areas encompassing our daily lives. Our optical devices are also being applied to the automotive field through photonics technology as distance measurement devices for automatic brake control and light level sensors that automatically control air conditioners and headlights, and so on.

What can photonics technology do to achieve a sustainable society?

Photodetectors and light sources

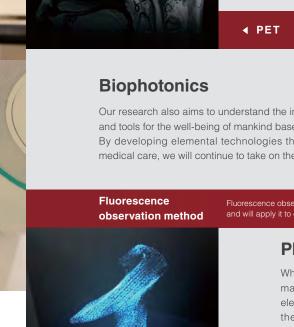
environmental measurement

Central Research Laboratory

Basic Research and Applied Research

Shedding light on every problem mankind faces

Life Photonics

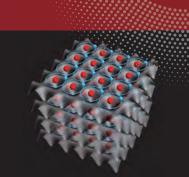

A future world with an optimal balance among Earth, people, and all life --- we aim to achieve this wonderful dream through the research into "light" which is the source of all substances.

What will our future world be like after 20 or 30 years? How about a future where all people can enjoy comfortable and exciting lives without anxiety and where an optimal balance maintained among the Earth, people and all life ensures total harmony? To make this dream a reality we have to overcome many obstacles and meet many challenges. Our Central Research Laboratory does R&D that conforms to "sustainability" values. We call this research "Life Photonics" which is based on the theme of "life" encompassing broad-ranging areas such as life, living things, human life, vitality sources, and ways of living. We will work on research into "Life Photonics" to make full use of various optical technologies.

RESEARCH

Optical information processing and measurement

We have created technologies for generating and applying so-called "new light" using key concepts such as optical computing, complex systems, and interactions between light and matter. Through intensive research on advanced optical control and measurement of the spatial, temporal and wavelength axes of light, we aim to create a whole new sphere of information processing.

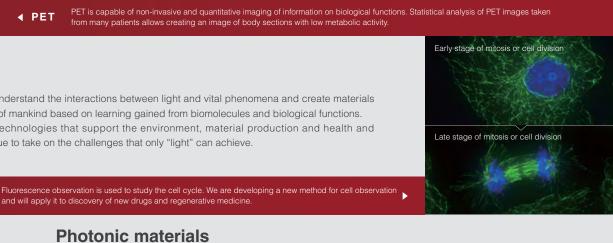


When the structure of a substance is smaller than wavelength of interest, the interaction between light and matter exhibits completely different behavior from that on the macro scale. Considering wavelength of electron, this phenomenon is same in case of the interaction between electron and matter. Therefore, we use the word "nano-photonics" to refer to the mutual interaction between light/electron and matter in the nano-region. We are constantly researching new materials which utilize this interaction between light/electron and light.

New semiconductor lasers iPMSEL[®]

Energy

New industries give people new ways of living from which new values are born. Then, these new values help acquire new and more accurate knowledge, which in turn will create new science. To foster and develop new industries, we now aim to create them for example by utilizing light for generating electrical power, medical treatment and for new substances based primarily on research into laser fusion capable of extracting energy from hydrogen isotopes available in the nearly inexhaustible supply of seawater.



To unlock the mysteries of quantum mechanics, we are working to make a quantum simulator a reality by creating

Courtesy of Ohmori Group, Depa Photo-Mol (IMS). National Institutes of Natural

Health care and medicine

We continue to take a broad approach toward achieving "true health" and making people's lives healthy and fulfilling. We will further expand the possibilities of light through research including the design and development of high-resolution PET systems, PET application research, and bio-measurements by applying

New semiconductor laser capable of emitting laser beams in any desired pattern This device will open up various new applications such as natural 3D

Creating a sun on Earth is an attempt to trigger nuclear fusion in high-temperature, high-density plasma by irradiating high

Electron Tube Division

Electron tube photodetectors and light sources

Applications of light extend to areas surpassing our imagination.

Pursuing performance to its farthest boundaries

Pursuing the ultimate in performance guided by past experience in fabricating devices for academic research has led to applications in high-precision optical measurement such as in medical, environmental and measurement fields, and its use has even spread to monozukuri or namely the creating of things that support life.

Electron tube devices are key devices for measuring and capturing phenomena that were impossible to find up to now. We achieve this by applying our long-fostered basic and element technologies. Our new manufacturing technology creates innovative devices that are more compact and optimized for particular usage environments, expanding the application fields of the equipment in which those devices are mounted. Electron tube devices that have actively been used in a wide range of fields such as medical diagnosis, spectroscopic analysis, semiconductors, biology, and academic research are now being pushed to their ultimate performance limits and applied to meet customer needs in a virtuous circle to expand the market.

PRODUCTS

Photomultiplier tubes (light sensors)

Light sensors with outstanding characteristics such as high sensitivity and high-speed response. Our photomultiplier products have been adapted in various applications and expanding the fields for more than five decades.

resolution.

Ion detectors

X-ray scintillator plates

X-ray detection devices used for medical X-ray diagnosis. Their unique structure ensures high quality images with high resolution. Main applications include chest examinations, mammographies, and dental examinations

We continue to provide solutions to various requirement by mastering the techniques for photocathode fabrication.

TOPIC

X-ray inspection of battery electric vehicle (BEV) components

Global efforts to reduce CO₂ emissions are now accelerating the movement toward electrification of automobiles. Battery electric vehicles (BEVs) are equipped with high-capacity lithium-ion batteries whose manufacture requires X-ray non-destructive inspections. Our microfocus X-ray sources, X-ray cameras, and other related products are indispensable for X-ray non-destructive inspections not only for lithium-ion batteries but also for automotive electronic circuit boards, engine components and driver-assist systems.

Plate) having subnanoseconds level time

Light sources (scientific lamps)

Scientific lamps with high illuminance, high stability and long life.

Our lamps have been contributing to equipment performance, maintenance performance and reducing running cost.

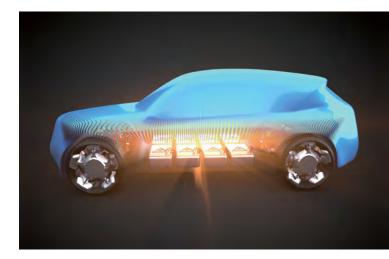
Microfocus X-ray sources

X-ray sources for industrial non-destructive inspection.

Our microfocus X-ray sources are indispensable for quality inspection of electronics devices that support our daily life.

Stealth dicing (laser dicing technology)

High quality dicing technology using laser for silicon wafers, glass substrates, etc. Stealth Dicing is a special achievement ntegrated with various optical technologies.



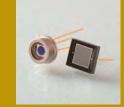
Automated mass production of glass is making technical strides. However, sophisticated glass works are still handcrafted by our experienced professionals


We continue to develop various light sources to push the limit of the lowest fluctuation by exploring discharge plasma phenomena

Solid State Division

Opto-semiconductor products

This technology of light is the path to new global possibilities.


Toward the possibilities of the new technology of light

Getting a grasp on what lies one step ahead for our world. Pushing the limits of our unique opto-semiconductor technology to meet advanced user needs.

The Solid State Division has explored physical properties that determine opto-semiconductor performance since the early days in this field and succeeded in creating a variety of product lineups. Our opto-semiconductor products incorporate unique semiconductor process technology, mounting & packaging technology, and MEMS technology, and cover a wide wavelength range from infrared, visible, ultraviolet, all the way to X-rays and high energy rays. They are used in wide-ranging fields including medical care, scientific measurement, communications, consumer electronics, and vehicle on-board electronics. We will continue to pursue opto-semiconductor technology, always staying one step ahead, to meet the increasingly sophisticated needs of the future.

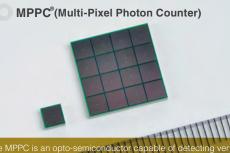

PRODUCTS

Image sensors

LED

n opto-semiconductor capable of detecting very noton counting levels, and is used for PET nce measurement, and high energy physics


TOPIC

Opto-semiconductor devices for driving support systems

Advanced driving support functions for cars are evolving at an ever more rapid pace. These include interfaces for reliably checking information essential for driving and systems for detecting possible hazards in advance. Our Solid State Division is actively working to commercialize opto-semiconductor devices (Si APD, MPPC, distance image sensor, etc.) for detecting vehicle periphery information which plays a vital role in making these on-board vehicle functions work effectively.

19

Si photodiode, Si APD, PSD, MPPC

Photo IC

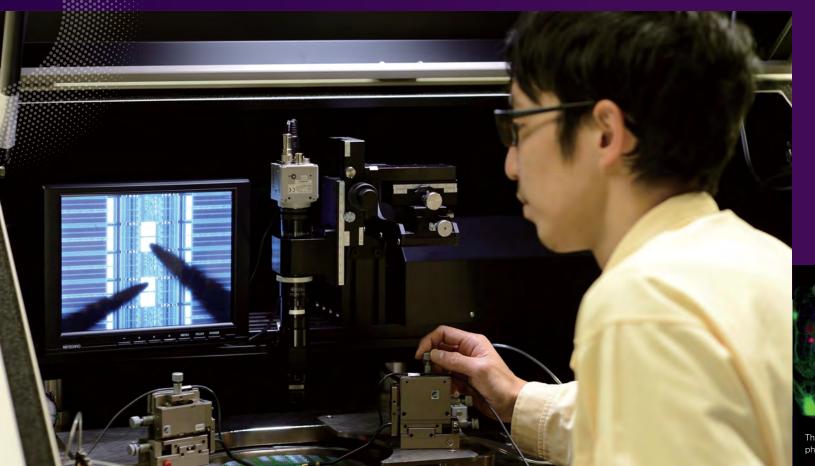
Infrared detectors

Opto-semiconductor modules

A wide variety of module products are

We are applying various advanced MEMS technologies to the manufacture of sophisticated opto-semiconductor device

World's smallest spectrometer head (according to our research)


We have developed an ultra-compact grating type spectromete by using advanced MOEMS (Micro-Opto-Electro-Mechanica Systems) technology to fabricate and combine a CMOS imag sensor and grating, etc.

Systems Division

Image processing and measuring systems

Shedding light on new possibilities

The key to further progress

Creating the breakthrough specialized systems based on the optical sensor technology

Our Systems Division is developing and manufacturing systems that integrate light detection technology, imaging technology, and image processing technology by using optical sensors. By utilizing our expertise and high technology as a leading sensor manufacturer, we design and develop specialized systems that combine core products, such as cameras with peripheral technologies and equipments.

PRODUCTS

By taking advantage of our long-fostered camera technology and expertise, we have produced OEM cameras designed specifically to meet user needs such as for the sensor,

Quantaurus

The Quantaurus allows easy and rapid measurement of luminescence quantum yields and fluorescence/phosphorescence lifetimes for evaluation of various luminescent materials and fluorescent probes.

The NanoZoomer is a digital slide scanner that convert glass slides into high-resolution digital data by high-speed scanning. It offers well-developed solution by using digital slides.

This technology supports capturing and imaging various life phenomena by using microscope and high-sensitivity camera.

devices at a design stage.

TOPIC

The ultimate performance in quantitative imaging

Hamamatsu Photonics has been developing high-sensitivity and low-noise cameras since the 1980s by leveraging its unique camera design technology. The ORCA-Quest equipped with the qCMOS image sensor is the world's first camera capable of PNR (photon-number-resolving) measurement that captures an image at very low light levels by accurately measuring the number of photoelectrons. Hamamatsu Photonics will be working to deliver the ultimate in quantitative imaging over a wide range of fields on the borders of human knowledge such as life science, astronomical research and quantum technology including quantum computers to further expand the boundaries of current science.

iPHEMOS[™]-MPX

The iPHEMOS detects weak light emissions caused by the defects in a semiconductor device to identify and analyze the failure locations.

Streak cameras

The streak camera is an ultrahigh-speed detector which captures light emission phenomena occurring in extremely short time on the order of picoseconds or nanoseconds.

pde-neo®

The pde-neo II is a medical device which uses infrared fluorescence to observe the distribution of blood vessels in a living body non-invasively.

This technology supports fault localization of semiconductor

This technology contributes to improvement of product quality control, which uses NIR or X-ray for wafer or food internal inspection

Laser Promotion Division

Lasers and related technology development

Creating energy to carve out a path to the future

Technology to widen the path to future dreams

Fabricating high-reliability laser products with our advanced photonics technology

With laser fusion research as its core, we are working on multifaceted developments of laser technologies.

We are exploring still further possibilities for laser by merging integrated optics technology and our cultivated technology by laser fusion research, such as gas laser, semiconductor laser, and solid state laser.

PRODUCTS

Single chip laser diodes Semiconductor lasers used for a broad range of applications including measurements,

Laser diode bar modules

laser pumping.

These modules fully exhibit the high-level performance, high-power output and high reliability that are features of the laser diode bars, and are designed for easy handling. Stacking the laser diode bars enables high-power output.

Laser heating systems

Laser heating systems optimized for thermal processing tasks are provided for specific applications such as soldering, plastic welding and quenching/hardening of materials

Lasers are used for many thermal processing tasks including resin welding, soldering, and hermetic sealing of glass as well as welding and quenching.

micro-processing is required.

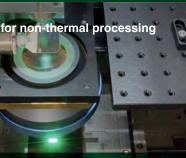
TOPIC

Next-generation social infrastructure devices

Sensing technology is currently used in all kinds of situations in our daily lives. Among these, non-contact optical sensing technology using light from compact lasers is very promising. Small and highly robust semiconductor lasers will play an indispensable role in every part of our daily lives, such as for various promising self-driving sensing functions including car collision prevention, human body sensing for auto door operation on subway and railroad station platform, and for detecting people at railway crossings.

printing, medical treatment, and solid-state

Quantum cascade lasers (QCL)


Semiconductor lasers with a lasing wavelength in the mid-infrared range. The capabilities of high throughput and in-situ measurement enable to be suitable source for environmental monitoring and are also becoming used in industrial process automation.

Solid-state lasers

Solid-state laser products developed by merging our semiconductor laser technology, optical design technology, optical thin film technology, polishing and bonding technology, MEMS (Micro-Electro-Mechanical-Systems) technology and other cuttingedge technologies.

LCOS-SLM (Liquid Crystal On Silicon – Spatial Light Modulator)

The LCOS-SLM is a spatial light modulator capable of modulating optical phases with high precision. It brings new functions to optical systems by wavefront control of light.

Lasers are also ideal as light sources for various nonthermal processing applications where high precision

Phase modulation technology

Phase modulation technology allows generating any desired light pattern by freely controlling the wavefront of light. This will contribute to practical use of optical processing technology delivering high precision and high throughput.

History of Hamamatsu Photonics

High power pulsed laser diodes were put on the market.

1987

•Excimer lasers were put on the market.

Central Research Laboratory

Miyakoda Factory opened.

Company's stock registered on Stock Exchange.

2008 Industrial Development Laboratory

2000

2002

2003

2005

Mitsue Factory opened.

the Nobel Prize in Physics (for the

research at Kamiokande where our

photomultiplier tubes were installed).

foundation : Hamamatsu Medical

to facilitate the early detection of

of New Photonics Industries

established for aiming at creating

new industries using photonics

cancer and dementia.

opened

technology.

The Graduate School for the Creation of New Photonics Industries

2000's

2004 ●Stealth Dicing Engine[™] unit was put

on the market.

2005 •Mini-spectrometers were put on the market.

2006 •MPPC (Multi-Pixel Photon Counter) was put on the market.

Chronology of company

1958

1959 Photomultiplier tubes were put on the market.

1953

1956 Image pickup tubes were put on the market.

•CdS cells were put on the market.

1963

•Streak camera systems were put on the market.

Infrared video cameras were put on the market.

25

1986

•Photo ICs were put on the market.

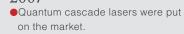
1990

Subsidiary established in Italy.

- the second section of the Tokyo
- Company's stock registered on the first section of the Tokyo Stock Exchange.

Company's stock registered on the first section of the Tokyo Stock Exchange

1990's


Microfocus X-ray sources were put on the market.

•Flat panel sensors were put on the

2007

2011

Shingai Factory opened. Subsidiary established in China.

2013

Professors emeritus François Englert and Peter W. Higgs were awarded the Nobel Prize in Physics (for Higgs boson discovery at CERN's LHC where our SSD, APD and PMT were used).

2014

Our 20-inch photomultiplier tube was recognized as an IEEE milestone. Subsidiary established in Taiwan.

2015

Professor Takaaki Kajita, the university of Tokyo, was awarded the Nobel Prize in Physics (for the research at SuperKamiokande where our photomultiplier tubes were installed).

2017

Compound semiconductor Fabrication Center opened.

Energetiq Technology, Inc. (U.S.A.) acquired as a subsidiary.

Surrounding Prof. Kaiita

2010's

2011

 ORCA®-Flash4.0 (scientific CMOS) camera) was put on the market.

2012

Micro PMT was put on the market.

2016

MEMS-FPI spectrum sensor and MEMS mirror were put on the market.

2020

Subsidiary established in Korea.

2022

Hamamatsu Ventures, Japan Co., Ltd. was established as a subsidiary

2020's

2021

ORCA-Quest was put on the market

Masatoshi Koshiba, professor emeritus of the university of Tokyo, was awarded

•A building of the general incorporated

Photonics Foundation was completed

The Graduate School for the Creation

O Corporate Profile

Corporate Outline (As of end of December 2022)

Company Name	HAMAMATSU PHOTONICS K.K.
Established	September 29, 1953
Capital	35,048 Million Yen
Number of Employees	3,884 (non-consolidated number, and not including 78 staff working overseas and others) (As of end of September 2022)

Global Network

Europe

●PHOTONICS MANAGEMENT EUROPE SRL

Chaussee de La Hulpe 120, 1000 Bruxelles, Belgium

HAMAMATSU PHOTONICS EUROPE GMBH

Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany Phone: (49)8152-375-0 Fax: (49)8152-265-8 E-mail: info@hamamatsu.de

HAMAMATSU PHOTONICS DEUTSCHLAND GMBH

· Main Office

Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany Phone: (49)8152-375-0 Fax: (49)8152-265-8 E-mail: info@hamamatsu.de

· Netherlands Office

Transistorstraat 7, 1322 CJ Almere, The Netherlands Phone: (31)36-5405384 Fax: (31)36-5244948 E-mail: info@hamamatsu.nl

· Poland Office

10 Ciolka Street, 126-127 01-402 Warsaw, Poland Phone: (48)22-646-0016 Fax: (48)22-646-0018 E-mail: poland@hamamatsu.de

Danish Office
Lautruphoj 1-3, 2750 Ballerup, Denmark
Phone: (45)44-20-99-49 Fax: (45)44-20-99-10
E-mail: info@hamamatsu.dk

· Israel Office (HAMAMATSU PHOTONICS ISRAEL LTD.)

Ha-Menofim 10 st., third floor, 4672561 Herzliya, Israel E-mail: info@hamamatsu.co.il

•HAMAMATSU PHOTONICS FRANCE S.A.R.L.

· Main Office

19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France Phone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr

Swiss Office

Dornacherplatz 7, 4500 Solothurn, Switzerland Phone: (41)32 625 60 60 Fax: (41)32 625 60 61 E-mail: swiss@hamamatsu.ch

Belgian Office

Axisparc Technology, Rue André Dumont 7, 1435 Mont-Saint-Guibert, Belgium Phone: (32)10 45 63 34 Fax: (32)10 45 63 67 E-mail: info@hamamatsu.be

Spanish Office

C. Argenters 4, edif 2, Parque Tecnológico del Vallés, 08290 Cerdanyola, (Barcelona), Spain Phone: (34)93 582 44 30 E-mail: infospain@hamamatsu.es

HAMAMATSU PHOTONICS UK LIMITED

Main Office

2 Howard Court,10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 1BW, UK Phone: (44)1707-294888 Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk

· South Africa Contact

9 Beukes Avenue, Highway Gardens, Edenvale, 1609, South Africa Phone/Fax: (27)11 609 0367

HAMAMATSU PHOTONICS NORDEN AB

· Main Office

Torshamnsgatan 35, 16440 Kista, Sweden Phone: (46)8-509-031-00 Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

•HAMAMATSU PHOTONICS ITALIA S.R.L.

Main Office

Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy Phone: (39)02-93 58 17 33 Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it

· Rome Office

Viale Cesare Pavese, 435, 00144 Roma, Italy Phone: (39)06-50 51 34 54 E-mail: inforoma@hamamatsu.it

U.S.A.

PHOTONICS MANAGEMENT CORP.

360 Foothill Road, Bridgewater, NJ 08807, U.S.A. Phone: (1)908-231-0960 Fax: (1)908-231-0852

HAMAMATSU CORPORATION

Main Office

360 Foothill Road, Bridgewater, NJ 08807, U.S.A. Phone: (1)908-231-0960 Fax: (1)908-231-1218

· California Office

2875 Moorpark Ave., San Jose, CA 95128, U.S.A. Phone: (1)408-261-2022 Fax: (1)408-261-2522

ENERGETIQ TECHNOLOGY, INC.

205 Lowell Street, Wilmington, MA 01887, U.S.A. Phone: (1)781-939-0763 Fax: (1)781-939-0769 E-mail: info@energetiq.com

Asia

HAMAMATSU PHOTONICS K.K.

- Headquarters

325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan Phone: (81)-53-452-2141 Fax: (81)-53-456-7889 E-mail: kikaku2@hq.hpk.co.jp

HAMAMATSU PHOTONICS (CHINA) CO., LTD.

Main Office

1201, Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R. China Phone: (86)10-6586-6006 Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn

Shanghai Branch

4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, P.R. China Phone: (86)21-6089-7018 Fax: (86)21-6089-7017 E-mail: hpcsh@hamamatsu.com.cn

Shenzhen Branch

14F China Merchants Tower 1#, No.1166 Wanghai Road, Shekou, Nanshan District, Shenzhen, P.R. China Phone: (86)755-2165-9058 Fax: (86)755-2165-9056 E-mail: hpcsz@hamamatsu.com.cn

Wuhan Branch

Room 1005 Fanyue City T2 Building, No.19 Guanshan Avenue, East Lake High-tech District, Wuhan 430075, Hubei, P.R. China Phone: (86)27-5953-8219 E-mail: hpcwh@hamamatsu.com.cn

BEIJING HAMAMATSU PHOTON TECHNIQUES, INC.

http://www.bhphoton.com

· Main Office

11-18 Building, No.188 Western Road, South 4th Ring Road, Fengtai District, Beijing, 100070 P.R. China Phone: (86)10-6370-6370 Fax: (86)10-6370-6371 E-mail: bhp@bhphoton.com

Langfang Factory

No.1 Road, Langfang Economic & Technical Development Zone, 062001 Hebei, P.R.China Phone: (86)316-597-0188 Fax: (86)316-597-0189

•HAMAMATSU PHOTONICS TAIWAN CO., LTD.

Main Office

8F-3, No.158, Section 2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Phone: (886)3-659-0080 Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tw

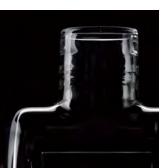
•HAMAMATSU PHOTONICS KOREA CO., LTD.

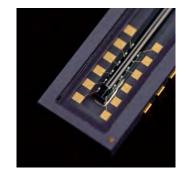
• Main Office A-912, 167, Songpa-daero, Seoul, 05855, Korea Phone: (82)2-2054-8202 Fax: (82)2-2054-8207

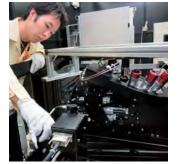
Hwaseong Plant

63-5, Dongtancheomdansaneop 1-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea Phone: (82)31-548-0050 Fax: (82)70-8290-0773

For detailed information concerning our Japanese corporation, please visit our website at https://www.hamamatsu.com/all/en/our-company/index.html







See it with your own eyes,

Listen to it with your own ears,

Understand it with your own heart.

What we do not know and what we

cannot do is an infinite dimension

we must now explore.

Teruo Hiruma

. .

. . . . •

.

•

....

•

. • • .

•

.

•

. . .

.

•

••••

•••• ••

••••

é

.....

•

• .

..... •

•

•

.

• •

•

• •

• •

٠

. . .

•

. .

. •

•

•

• .

•

• •

.

•

.

.

.

.... ••••

.

•

.

.

••••••

....

.....

...

. .

. . .

.

••

.

•

.

.

••••

0

.

.

.

.

.

•

•

•

. •• • •

. •

.

.

•

..... -

. .

.

. • • • •

. .

. .

• •

. .

•

• •

. •

• .

• •

•

.

. •

. •

. . •

• •

• •

.

. • •

• •

.

.

.

• •

•

•

•

.

.....

.

. • •

•

.

. • •

•

•

• • . • .

> •

• •

. . •

> .

• • • •

. \bullet

• •

•

HAMAMATSU PHOTONICS K.K.

www.hamamatsu.com

Cat. No. XINT1001E17 MAR, 2023 DNP (2.000)